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ABSTRACT 
 
 
 

Resonant excitation tests of rotor blades in vacuum spin pits using discrete oil jets 

showed that impact erosion of the blades could limit test times, but lower excitation 

amplitudes were produced using mist nozzles. Smaller diameter discrete jets might 

extend test times, but to fully prevent erosion, oil mist droplet size needed to be 30 

microns or less.  The present study examined both approaches.  Prototype nozzles were 

developed to create 0.005 inch diameter multiple discrete jets using first alumina, then 

stainless steel tubing, laser and micro-machine drilling. The latter technique was selected 

and 50 were manufactured for evaluation in HCF spin tests. A vacuum test chamber was 

built to observe and photograph spray patterns from the prototype nozzles and from 

commercially available mist nozzles.  An LDV system was used successfully to 

determine the velocity of the oil droplets within the mist. A complete mapping of mist 

nozzle sprays is required to allow routine design of blade excitation systems. 
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I. INTRODUCTION  

The reliability of gas turbine engines has continuously improved over the years. 

In addition to improvements in materials and manufacturing, there has been a progressive 

development in the analytical prediction, test and measurement techniques used in the 

development of new engine components. Finite element methods to calculate stresses in 

high-speed rotating components have become mature, and test methods to verify low-

cycle fatigue (LCF) life in vacuum spin tests have become routine. In the recent years, 

attention has shifted to the elimination of failures that can result from high-cycle fatigue 

(HCF). High cycle fatigue failures can occur because an unforeseen destructive blade 

resonance occurs in a new rotor design, or because a flaw in the manufacture of a blade, 

or from damage during machine operation, which propagates until the blade eventually 

fails. In the early 90’s, more than 30% of military engine failures were due to HCF. Also, 

since new military fighter aircraft were being designed to have only a single engine, and 

those engines incorporated integrally-machined bladed disks (‘blisks’, which are highly 

undamped, resonant structures) rather than individual blades inserted into slots, a focused 

‘National Gas Turbine Engine (NTE) High Cycle Fatigue (HCF) Program’ was initiated 

in 1996. 

As a coordinated effort within the NTE/HCF program, a rotor-spin research 

activity was initiated at the Turbopropulsion Laboratory (TPL) at the Naval Postgraduate 

School (NPS) to support the Navy’s rotor-spin activity at NAWC-AD Patuxent River, 

Maryland. Specifically, the goal at TPL was to reactivate a full-scale engine rotor spin pit 

facility and to develop excitation and measurement techniques required to conduct HCF 

testing in vacuum spin chambers. By working with full-scale rotors, the techniques would 

automatically transition to the Navy’s test activity at Patuxent River.  

Since the reactivation and plans were first reported (Ref 1), air-jet excitation 

(AJE), oil-jet excitation (OJE) and eddy-current excitation (ECE) techniques have been 

investigated at NPS and used to excite a number of different rotors, including military 

engine turbines and fans. Strain gauge and non-contact ‘time-of-arrival’ blade response 

measurements (Ref 2) have been made, and progress has been reported at successive 
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NTE/HCF meetings (Ref 3-6). At the outset of the present work, it had become accepted 

that the only excitation technique that could be used to generate unsteady stress 

amplitudes which were sufficiently large, for a period of time that was sufficiently long, 

to prove HCF life, was the OJE technique. The OJE technique was originally proposed in 

Ref 1, and subsequently developed by Test Devices Inc., sponsored by the Air Force (Ref 

7). Subsequent experience at TPL showed that discrete jets of oil could be used only for 

short periods of time without causing erosion, whereas commercial mist-producing 

nozzles in the same locations did not give the same high levels of blade excitation.  

Therefore, the initial goal of the present study was to try to find a practical 

solution to the problem of erosion using discrete jets. Subsequently, when improved 

excitation levels were acheived in spin tests using the mist nozzles, identifying and 

quantifying the flow patterns produced by those nozzles became the second goal. 

In the following Section II, the rotor spin pit facility is briefly described and the 

conclusions relating to erosion are outlined. A review of the literature related to liquid-

metal impact erosion follows, and a design concept for a multi-mini-jet oil nozzle is 

described. In Section III, an experimental program leading to the successful development 

of a practical nozzle, using a windowed vacuum chamber apparatus built for that purpose, 

is documented. An experimental program to observe and map the flow generated by mist 

nozzles using a laser-Doppler velocimetry (LDV) system is described in Section IV, and 

conclusions and recommendations relating to both approaches are given in Section V. 

 

 

 

 

 

 

 

 



II. BACKGROUND 

A. ROTOR SPIN RESEARCH FACILITY AND TEST TECHNIQUE 
A general view of the NPS vacuum spin pit facility in Building 215 at TPL is 

shown in Figure 1 and a section showing its construction is shown in Figure 2.  

 
Figure 1.   View of the Spin Pit Facility 

 
 

14 ft.

 
Figure 2.   Section showing the construction of the pit 

 

Test rotors are hung from a high-speed air turbine and driven up to controlled speeds in a 

near vacuum (typically 0.5 milli-bar). A test to measure the resonant blade response to 

excitation at a particular “engine-order (EO)”, where “XEO” is X times per rotor 

revolution, usually involves sweeping the RPM slowly through the resonant speed while 

3 



injecting through X single (or groups of) nozzles equally spaced around the periphery.  

The oil injection and recovery system, and arrangement of vacuum pumps, are shown 

schematically in Figure 3.  An example of an excitation setup is shown in Figure 4.  

Blade response is measured using strain gages, with signals acquired through a high 

speed slip ring assembly attached to the turbine, which is visible in Figure 1. 

 

 

 
 
Figure 3.   Schematic of oil-injection and vacuum pumping systems 
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Figure 4.   Oil excitation at the blade tips 

 
 

B. STATUS OF OIL-JET EXCITATION DEVELOPMENT 
In Reference 5, results were presented from using both discrete jets (Figure 5a) 

and mist-nozzles (Figure 5b) to excite resonance. 

                           

 a) Discrete Jet    b) Mist Nozzle 

Figure 5.    Discrete jet and oil mist nozzle flow patterns 
 

However, Figures 6 and 7 (from reference 5) show that, while very high blade vibration 

amplitudes were achieved using discrete jets (and depended only on the mass of oil 

injected), erosion of the blade surface resulted after an extended exposure to oil impact.  

(As can be seen in Figure 4, only a cleaning effect occurred from limited exposure).  In 

Figure 6, the response to oil mist was clearly much lower, and therefore the challenge 

5 
was to examine whether erosion was inevitable with discrete jets, or could it be avoided 



by redesign; alternately, could mist nozzles be configured to give larger amplitudes. First, 

a review was made of the literature on impact erosion.  
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re 6.   Amplitude of resonant response 
 

 
Figure 7.   

Figu

 
 

 

Erosion of the impacted surface after extended testing 
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C. EVIEW OF EROSION LITERATURE 
on is the progressive loss of material 

from a

uid droplets and discrete jet impacts cause erosion due to repetitive impact 

loads o

s.  The process is illustrated 

schema

R
Liquid impact (or liquid impingement) erosi

 surface due to the continued exposure to impacts [Ref 8].  The impact stream can 

be in the form of liquid droplets or discrete jets.  This type of erosion can be found on 

steam turbine blades, on aircraft flying through rain, or on tubes used for heat exchangers 

that have bends.  The erosion occurs in stages and is similar for the different types of 

impacts.  The many factors that cause the erosion make it hard to prevent the loss of 

material, but there are methods to combat the erosion process and increase the life of the 

material. 

Liq

n the material.  Discrete jet impacts are more severe than liquid droplets.  Discrete 

jets impact the material along a line, so the number of impacts equals the number of 

impacts experienced by the target area.   The damage to the material is caused by the high 

pressure generated at the time of the initial impact and the high velocity lateral flow of 

the liquid escaping from the high-pressure zone [Ref 9].  These factors are used 

effectively in rock and metal cutting processes.  Liquid droplets do not necessarily impact 

the material in the same spot.  The impacts can hit the material at random spots.  An 

assumption has to be made that the drops are evenly distributed over the surface and that 

the area of influence of each impact is the projected area of the drop [Ref 8].  Liquid 

droplets cannot move at high velocities without breaking up, so the problem with liquid 

droplets is when a solid body moves at high velocity through an area of droplets. High 

contact pressure is created at each impact and causes deformation and work hardening of 

the surface.   A water hammer effect is created [Ref 10]. 

Liquid impingement erosion happens in stage

tically in Figure 8.  The type of impacts has no effect on whether the stages will 

occur, but just how long each stage lasts.  The first stage is the incubation stage.  During 

this stage, little or no material loss occurs.  There is roughening and metallurgical 

changes are taking place on the surface.  Plastic or brittle deformation in the impacted 

areas is also occurring.  The small loss of material during this stage is attributed to weak 

spots on the material’s surface.  The incubation stage may not occur if the impacts are 

severe enough to immediately cause substantial material loss.  During the acceleration 



stage, the erosion rate increases to a maximum.  Pits start to form on the surface of the 

material.   During the maximum rate stage, the erosion remains constant.  The pits grow 

bigger and merge to form grooves. 

   

 
Figure 8.   Characteristic erosion versus time curves.  (a) Cumulative erosion versus 

b) 

 

he impacted area is now covered with pits and grooves.  During the deceleration stage, 

terial 

propert

exposure duration (time, or cumulative mass or volume of liquid impinged). (
Instantaneous erosion rate versus exposure duration obtained by differentiating 

curve (a).  The following stages have been identified: A incubation stage: B 
acceleration stage; C, maximum rate stage; D, deceleration stage, E, terminal 

stage. [Ref 11] 

T

the erosion rate declines to approximately a half or even a quarter of the maximum 

erosion rate.  The volume of material loss decreases because the full impact force of the 

liquid is no longer directly hitting the surface.  The surface is uneven and possibly 

jagged.  During the terminal stage, the erosion rate is low and continues to decrease 

slowly, and this is attributed to the work hardening of the material [Ref 9, 11, 12].   

The cause of liquid impact erosion cannot be attributed to any one ma

y.  The erosion is due to a combination of several properties.  For liquid drop 

impingement, metals and alloys are eroded at stress levels that are below their respective 

yield strengths.  Localized yielding suggests that there is non-uniformity in the strength 

and structure of the materials surface.  The non-uniformity at the microscopic level 

contributes to the erosion.  Thus in the incubation and acceleration stages, depressions 

form and grow as a result of stress concentrations caused by the change in shape of the 

8 
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ude of the relative velocity 

affects 

surface.  The continued plastic deformation of the surface leads to fractures and pitting.  

The high speed of the liquid flowing over the surface provides the mechanism for 

material removal.  Cavitation in the flow can cause pitting and material removal, and is 

another explanation for material loss [Ref 12].  Erosion in the incubation and acceleration 

stages is also thought to occur due to the removal of fragments caused by fatigue-like 

failure mechanisms.  Many impacts have to occur in one area for the fragment to be 

loosened from the surface.  The decrease in the erosion rate is harder to explain.  The 

erosion rate decreases because the surface of the material is roughened and the surface 

area is increased, therefore, more energy is needed to continue the erosion.  The liquid 

drops or jets are now impacting peaks and slopes of the roughened surface and the work 

hardening of the material reduces the rate of loss [Ref 12].   

The way the fluid impacts the surface and magnit

the erosion rate.  If the impact velocities were low enough, the incubation period 

would become so long that no actual material loss would occur over a reasonable time.  

Erosion depends on the normal component of the impact velocity; therefore, there is an 

impact angle dependence.  Erosion would be reduced if the impacts on the surface were 

more glancing [Ref 11].  The erosion rate decreases with a decrease in the droplet size.  A 

given amount of liquid does less damage with smaller drops since there is a shorter time 

duration of each pressure pulse from the smaller drops.  When droplet sizes were varied 

from 250 micrometers to 1000 micrometers, there was first an increase in the erosion rate 

as the droplets size increased [Ref 13].  The erosion rate peaked at 700 micrometers then 

decreased.  The speed at which the droplets were moving affected the erosion rate.  The 

faster the droplets were moving the higher the erosion rate.  The speed did not affect the 

peak erosion rate at 700 micrometers.  The erosion depth of the material was greater for 

larger droplets, but for smaller particles the erosion damage was spread over a larger area 

[Ref 13].  For liquid jets, the standoff distance affected the erosion rate [Ref 9].  From 

distances, of 2.54 centimeters to 15.24 centimeters, the material loss increased as the 

distance increased to a peak at 10 centimeters and then decreased.  When the diameters of 

the jets were changed, similar results occurred.  Air in the jet was thought to cause the 

decrease in material loss after 10 centimeters.   The air reduced the erosion capability of 

the jet because the air acted as a cushion and changed the characteristics of the jet.  The 
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. PROPOSED APPROACH 
, the dimension of the liquid droplets or the 

diamet

 

 

increase in material loss to the peak standoff distance of 10 centimeters may be due to the 

increase of area of impingement, because of the spread of the jet [Ref 9]. 

To combat the erosion caused by liquid impact, the material that w

liquid needs to be protected.  A protective coating could be applied to the material, 

so the coating erodes and not the material.  The geometry and/or fluid dynamics should 

be modified to reduce the amount of liquid impacting the exposed surfaces.  Reducing the 

velocity of the droplets and the droplet size might keep the erosion rate in the incubation 

stage longer.  The impact angles should be changed to reduce the normal component of 

the impact velocity.  Reducing the time that the material is operating in the most severe 

conditions would decrease the erosion rate [Ref 14].  A combination of one or more 

would reduce the erosion rate and might keep the process in the incubation stage for the 

duration needed, or at the very least, keep it in the incubation stage for longer. 

 

D
Clearly, from the above review

er of the impacting jets, is critical in determining the incubation period and 

subsequent erosion rate in any fixed arrangement of geometry and metal speed. Therefore 

a test chamber was built to facilitate the development of discrete jet nozzles incorporating 

much smaller diameter jets. The chamber subsequently allowed a variety of mist nozzles 

to be photographed and, in two cases, enabled a preliminary mapping to be made of the 

(conical) droplet velocity field. 

 

 

 

 



III. VACUUM CHAMBER TEST PROGRAM 

A. APPARATUS DESCRIPTION 
A windowed test chamber was constructed using PVC piping, as shown in Figure 

9.  The chamber and associated apparatus allowed different nozzles to be tested quickly 

and the spray patterns to be photographically recorded at different supply pressures and 

flow rates.

 

 
Figure 9.   Oil nozzle test chamber 

 

Details of the chamber, and the operating procedures, are given in Appendix A. The oil 

used throughout was MARCOL 5, made by Exxon Mobil.  The Material Safety Data 

Sheets (MSDS) are given in Appendix B. The spray patterns were recorded using a Sony 

Mavica (Model MVC-DF91) digital camera. Commercial spray nozzles from various 

companies and prototype nozzles designed in-house were tested.   

 

11 
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B. DISCRETE JET NOZZLE DEVELOPMENT 
In an attempt to extend the erosion ‘incubation period’, the requirement was to 

develop a single nozzle that would generate multiple small-diameter discrete oil jets.  For 

practical reasons (to maintain contamination-free oil flow using standard filters and oil 

pressure levels) hole diameters of 0.005 inches were to be used.  Calculations predicted a 

flow rate of ~0.5 gph from each hole at 100 psia, so that a nozzle with 8 small holes 

would be equivalent to a single 4 gph nozzle with a single hole. The concept was first 

evaluated experimentally, using materials that were on-hand, then several different 

approaches to the design were pursued in parallel until a practical, cost-effective solution 

was found. In-house manufacture, where drilling holes as small as 0.010 was considered 

to be an absolute lower limit, was not an option.  

The approaches that were initially considered included using metal tubing, laser 

drilling, electrical-discharge machining (EDM), chemical etching, and using ruby 

nozzles. From an internet search, using the Thomas Net directory, companies that 

manufacture small tubing and companies that can manufacture small diameter holes, by 

laser-drilling, EDM, or machine drilling were found and contacted. From these contacts, 

prototype nozzles were built and evaluated experimentally using the vacuum test 

apparatus, as described in the following paragraphs. 

 

1. Alumina Tubing 
Omega Engineering Inc. thermocouple insulators were on-hand. Nominally, the 

O.D. was 0.031 inches, with two 0.005 inch diameter holes.  The insulator material was a 

brittle, glassy ceramic (alumina), and was fragile and easy to break.  Examples are shown 

in Figure 10, against a scale divided in inches and tenths.  Longer pieces were easier to 

handle, and this determined the method used to fabricate a nozzle.  Seven intermediate 

lengths were bundled, epoxied together, and into a metal sleeve. When set, a grinding 

tool was used to cut a 0.15 inch length from the center of the bundle, which was then 

pressed into a hole drilled into the end of a Hago mini-mist nozzle. 

 



 
Figure 10.   Ceramic tubes from Omega Engineering, Inc 

 

The oil spray pattern obtained from the nozzle is shown in Figure 11, together 

with a micro-photograph of the nozzle exit surface. 

   

   
Figure 11.   Alumina-Insulator nozzle flow and micro- photograph of exit surface 

 

Since seven insulators were bundled together to make the nozzle, there should have been 

14 individual jets.  From the pictures taken, including rotating the nozzle to record 

different views, only eight discrete jets could be discerned.  Since the Hago nozzles had a 

fine mesh filter in the inlet to the nozzle, and it was intentionally left in place when the 

nozzle was modified here, clogging of nearly half the holes was not to be expected. 

However, as can be seen in Figure 11, the holes in each insulator were extremely close to 
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each other (~0.002 inches) so that any two adjacent jet streams might merge into one.  

Another possibility is that some tubes were contaminated to begin with as a result of the 

grinding process used to cut the length followed by the use of shop air to clear the holes 

of particles.  

While the test showed that oil could be supplied through a series of 0.005 inch 

diameter holes successfully, and insulators with only a single hole could be obtained from 

Omega, constructing 45 nozzles using this approach would require many man-hours, and 

would be unlikely to result in near-identical units. 

 

2. Small Hole Tubes 

Companies, that made hypodermic needles, which had diameters as small as 

0.005 inches, were found and Vita Needles was contacted.  The company could make 

tubes with 0.005 inch internal diameters, cut the tubes to a specified length (0.1 inch was 

required to limit L/D to 20 while leaving a length that could be handled conveniently), 

and de-burr the cut sections.  Examples of the tubes are shown in Figure 12.   

 

 
Figure 12.   Tubing Sections made by Vita Needles (0.005 inch diam. by 0.1 inch long) 

 

A test nozzle was built using a standard quarter inch pipe cap and four tube 

sections as shown in Figure 13.  (Clearance holes were drilled into the cap and the tube 
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sections were inserted, using epoxy to seal). The nozzle was tested in the vacuum test 

apparatus and an example of the spray pattern observed is also shown in Figure 13. Four 

discrete jets were produced.  

 

 
Figure 13.   Prototype nozzle using tube sections from Vita Needles 

 

The jets were near-perpendicular to the surface of the nozzle and did not interact. Though 

the nozzle worked successfully, it was not an economical design since it required the 

drilling of 0.02 inch diameter retaining holes. Creating forty-five nozzles with eight tubes 

in each and ensuring that the tubes were perpendicular to the surface, would be time 

consuming. Other options were therefore investigated. 

 

3. Laser Drilled Holes 
Laser drilling is a method that can be used to make small holes in many materials.  

Laser drilling is a non-contact process, so there is zero tool wear or drill breakage [Ref 

15].  Laser drilling can be done by two methods:  percussion or trepanning.   Using the 

percussion drilling method, the laser beam is focused to a spot equal to the diameter of 

the hole to be drilled, and then either a single or several laser beam pulses are used to 

make the hole.  The laser and the material to be drilled are held stationary during the 

process [Ref 16].   In the trepanning process, either the laser or the material is moved, as  
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the laser beam pulses are active.  This is used if a larger hole is required [Ref 15].  The 

two most popular types of lasers used for laser drilling are the ND-YAG or CO2 laser 

[Ref 17].   

The ND-YAG laser is an acronym for Neodymium-Doped Yttrium-Aluminum-

Garnet laser.  The ND-YAG laser uses a light wavelength of 1.06 µm which can be 

transmitted through flexible quartz fibers.  This makes the ND-YAG laser a considerably 

simpler design then the CO2 lasers, and the ND-YAG laser’s wavelength is absorbed 

more readily by metals then the CO2 laser radiation [Ref 18].  The advantages of the ND-

YAG laser are that it is a non-contact process, it is unaffected by magnetism, it produces 

narrow fusion and heat-affected zones with minimal shrinkage and distortion [Ref 18].   

The CO2 laser is considered the most powerful type of industrial laser available, 

and it is commonly used for contour cutting and deep penetration welding [Ref 18].  The 

CO2 laser has a light wavelength of 10.6 µm, and most materials absorb it.  The 

advantages of the CO2 laser are that there is no tool wear and additionally low heat input, 

so there is low distortion or warping of material being cut.  Cut edges are relatively 

smooth and approximately perpendicular to the surface; there is a narrow heat affected 

zone, and difficult to cut material (such as foam rubber, and very hard material, such as 

ceramics), can be cut [Ref 18]. 

Several companies were contacted. Two companies, Lenox Laser and Rache 

Corporation, subsequently participated in making prototype nozzles using laser drilling, 

for which the specification diagram is given in Appendix C. 

a. Lennox Laser 
Lenox Laser was provided a Swagelok SS-4-CP 316 SS pipe cap as shown 

in Figure 14.  The inside of the pipe cap was milled (in-house) so that the top of the pipe 

cap was precisely uniform and 0.01 inch thick.  Lenox Laser then used a ND-YAG laser 

to drill eight holes with 0.005 inch diameters at 0.020 inch intervals.  A magnification of 

the surface of the resulting nozzle at 48X magnification (showing only holes 4, 5, and 6) 

is   shown in  Figure 15.   The nozzle was  marked   to  ensure  that  each  hole  could be  



identified when put under the microscope again.  The prototype nozzle was tested in the 

vacuum test apparatus.  The supply pressure to the nozzle was varied from 10 psig to 150 

psig. 

 

 
Figure 14.   Swagelok SS-4-Cp 316 pipe cap 

 

 

 
Figure 15.   Lennox Laser nozzle [Holes 4(bottom), 5, and 6 at 48X magnification] 
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The oil spray of the nozzle at a flow rate of 100 psig can be seen in Figure 

16.  The individual jets were not all perpendicular to the surface of the pipe cap.  Two of 

the jets merged to form one stream.  The test was run several times to determine if small 

particles were clogging the holes and causing the streams to merge.  The nozzle was 

cleaned and an extra filter was used.  Similar results to that shown in Figure 16 were 

obtained.  The holes were examined carefully again at higher magnification. It was found 

that the holes (on average) were about 0.01 inch in diameter and not 0.005 inch in 

diameter.  The holes were again examined under the optical microscope, but with greater 

magnification.   

 

 
Figure 16.   Lennox Laser nozzle at a flow rate of 100 psig and vacuum of 100 microns 

 
 

A magnification of 290X was used and an example of the result is shown in Figure 17. 

The increase in magnification allowed only one hole to be examined at a time. A light 

was used to get a better look inside the holes at 290X magnification and the result is 

shown in Figure 18. 
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Figure 17.   Lennox Laser nozzle [Hole 6 at 290X magnification] 

 
 

 
Figure 18.   Lennox Laser nozzle [Hole 6 at 290X, with back lighting] 

 

It can be seen that the hole was not round and that the surface of the hole, which is the 

exit, was bigger than the entrance.  This was thought to play a part in causing the oil jets 

to not be perpendicular to the surface of the pipe cap (the oil would be exiting through an 
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irregular diffuser).  Examination of the other 7 holes revealed that they had the same 

general characteristics as hole 6.  Lenox Laser was contacted and it was determined that 

the results were the best that the company could do with their normal production 

methods.   

 
b. Rache Corporation 
The Rache Corporation was willing to discuss the requirements, and to 

suggest design changes which would achieve what was needed, using techniques that 

they had available.  They not only did laser drilling but also welding. Therefore it was 

possible to first machine through the Swagelok pipe cap, and then weld a 0.01 inches 

thick plate on the end after the holes had been made in the plate.  The plate would be 

attached such that the side from which the laser made the holes would be the entrance for 

the oil, so that the non-uniform passage would converge in area to the exit plane.   The 

Rache Corporation made two nozzles.  Both nozzles were looked at under the optical 

microscope at 48X magnification.  Nozzle 1 is shown in Figure 19 and Nozzle 2 is shown 

in Figure 20.  One obvious observation looking at the pictures was that the holes were 

smaller than the Lenox Laser holes.  The holes were also examined at 290X 

magnification.  Nozzle 1 is shown in Figure 21 and 22, and Nozzle 2 is shown in Figure 

23 and 24. 

 
Figure 19.   Rache nozzle 1 [Holes 4 (top), 5, and 6 at 48X magnification] 
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Figure 20.   Rache nozzle 2 [Hole 4 (top), 5, and 6 at 48X magnification] 

 
 
 

 
Figure 21.   Rache nozzle 1 [Hole 5 at 290X magnification] 
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Figure 22.   Rache nozzle 1 [Hole 5 at 290X, with back lighting] 

 
 
 

 
Figure 23.   Rache nozzle 2 [Hole 6 at 290X magnification] 
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Figure 24.   Rache nozzle 2 [Hole 6 at 290X, with back lighting] 

 

The nozzles were than tested in the vacuum test chamber.  The oil supply pressure was 

varied from 10 psig to 110 psig.  The results for Nozzle 1 and Nozzle 2 at 100 psig are 

shown in Figure 25 and Figure 26, respectively.  The spray patterns for both nozzles 

showed jets, which were not perpendicular to the surface of the nozzle.  Since the holes in 

the nozzles were now smaller, a finer filter was added in the line to ensure that small 

particles were not clogging the holes.  The spray pattern did not change.  The holes were 

then examined under the optical microscope at 340X magnification and the results are 

shown in Figure 27, 28, 29 and 30. The Rache Corporation was contacted to see if the 

drilling process could be refined to make smoother, rounder holes, but the process they 

used would not allow it.  Since similar results had resulted using two different companies, 

laser drilling was not pursued further. 
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Figure 25.   Rache nozzle 1 [100 psig into 150 microns] 

 
 
 
 

 
Figure 26.   Rache nozzle 2 [100 psig into 150 microns] 
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Figure 27.   Rache nozzle 1 [Hole 5 at 340X magnification] 

 
 
 
 

 
Figure 28.   Rache nozzle 1 [Hole 5 at 340X, with back lighting] 

 

25 



 
Figure 29.   Rache nozzle 2 [Hole 6 at 340X magnification] 

 
 
 
 
 
 

 
Figure 30.   Rache nozzle 2 [Hole 6 at 340X, with back lighting] 
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4. Electrical Discharging Machining 
Wire EDM uses a controlled electrical current or spark erosion to remove metal 

(Ref 19).  During the EDM process, a series of timed electrical pulses remove material 

from the specimen.  The specimen and an electrode are immersed in a dielectric.  A 

power supply controls the timing and the intensity of the electrical charges (Ref 20).  The 

electrical sparks vaporize and melt the metal and create a crater in the specimen.  Each 

spark can reach temperatures between 8000 and 12,000 degrees Celsius (Ref 21).  

Particles are removed by the continuous flushing of the dielectric fluid.  The electrical 

discharges produce micro-craters and the discharging continues until the desired shape is 

made (Ref 22).  Companies that use wire EDM to make small holes were not asked to 

attempt a prototype nozzle laser since there was clearly some similarity with the laser 

drilling technique, and because an economical solution was found in micro-drilling. 

 

5. Micro-drilled Holes 
Most companies contacted could not machine-drill holes as small as 0.005 inches.  

Most were limited to 0.008 inches to 0.01 inches.  However, one company, Vermont 

Mold & Tool, stated on their website that they could drill holes accurately down to 

0.0028 inches.  The company was contacted, and they offered to make a nozzle with 

0.005 inches diameter holes through a surface with a thickness of 0.01 inch.  A standard 

Swagelok pipe cap, shown in Figure 14, was sent to the company, who returned a 

prototype nozzle.  The nozzle was put under the optical microscope at 48X magnification 

and the result is shown in Figure 31.  The magnification was set to 290X, and the 

resulting pictures are shown in Figure 32 and 33.  The holes were seen to be round with 

no jagged edges.  The magnification was increased to 340X, and the result is shown in 

Figure 34.  The nozzle was then installed in the vacuum test chamber and the oil supply 

pressure was changed from 10 psig to 120 psig.  The spray pattern from the nozzle at a 

pressure of 100 psig for two different runs is shown in Figure 35 and 36.  The discrete 

jets of oil coming out of the nozzle are seen to be perpendicular to the surface.   



 
Figure 31.   Vermont nozzle [Holes 4 (top), 5, and 6 at 48X magnification] 

 
 
 

 
Figure 32.   Vermont nozzle [Hole 5 at 290X magnification] 
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Figure 33.   Vermont nozzle [Hole 5 at 290X, with back lighting] 

 
 
 

 
Figure 34.   Vermont nozzle [Hole 5 at 340X magnification] 
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Figure 35.   Vermont nozzle [100psig into 60 microns] 

 
 

 
Figure 36.   Vermont nozzle [100psig into 70microns] 

 

Experience with the prototype nozzle showed that particular care was needed in 

handling such nozzles. To obtain perpendicular streams after attaching the nozzles to the 

wand required careful handling of the nozzle, and the use of micro-filters to keep the 
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holes clean.  Filters that can filter particles much smaller than the hole diameters are 

needed.  Nitrogen was used to blow out any particles that could clog the holes, but merely 

touching the surface of the nozzle could cause the nozzle to get partially blocked, and 

lead to an errant stream direction. 

Following the series of prototype tests, it was concluded that the prototype nozzle 

met the required specifications. Similar nozzles (49) have since been delivered to 

complete a total order of fifty.   

 
C. MIST NOZZLE SPRAY PATTERNS 

Fog nozzles produce small diameter particles.  If less than 30 micrometers, small 

particles will not erode turbine blades [Ref 7].  The spray patterns of four Hago brand 

nozzles of different flow capacities (rated in gallons per hour, gph]) were examined.  The 

four nozzles tested were a 1-gph, a 2-gph and a 4-gph ‘mini-mist’, and a standard 6-gph 

nozzle. Each nozzle was installed, in turn, on the wand in the vacuum test chamber, and 

the oil pressure was increased from 10 psig to 120 psig.  Pictures of the spray patterns 

from each nozzle were taken at 10 psig intervals. All tests were carried out using Exxon 

Marcol 5 oil. The results are described in the following paragraphs.  [For scaling 

purposes, the hex-head of the mini-mist nozzles measured 0.44 inches and the standard 

nozzle 0.625 inches across the flats].  

 

1. 1-gph Mini-Mist Nozzle 

The results for the 1-gph mini-mist nozzle are shown in Figure 37 for 10-60 psig 

and Figure 29 for 70-120 psig. It can be seen that the nozzle did not produce a mist or a 

cone from 10 to 60 psig. Instead, the flow was similar to a discrete jet.  The spray pattern 

changed when the flow pressure was over 70 psig as shown in Figure 38.  The oil started 

to form a cone shape, but the oil clearly did not mist completely.  The spray pattern 

contained oil streams.  At the maximum test flow pressure of 120 psig, the spray pattern 

gave a total spray angle of about 40 degrees, compared to the manufacturer’s quoted cone 

angle of 80 degrees.  

 



 

 

 
Figure 37.   Hago 1-gph mini-mist nozzle: Left side, 10 (top), 20 (middle), 30 (bottom) psig. 

Right side, 40(top), 50 (middle), 60 (bottom) psig 
 
 

 

 

 
Figure 38.   Hago 1-gph mini-mist nozzle: Left side, 70 (top), 80 (middle), 90 (bottom) psig. 

Right side, 100(top), 110 (middle), 120 (bottom) psig. 
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2. 2-gph 
are shown in Figure 39 for 10-60 psig 

and Fig

 

. 4-gph Mini-Mist Nozzle 
are shown in Figure 41 for 10-60 psig 

and Fig

 

. 6-gph Standard Nozzle 
ozzle are shown in Figure 43 for 10-60 psig 

and Fig

 

 

 

 

Mini-Mist Nozzle 
The results for the 2-gph mini-mist nozzle 

ure 40 for 70-120 psig. It can be seen that the 2-gph nozzle did not form a mist 

until the flow pressure was 50 psig or greater.  The spray pattern below 50 psig was not a 

full cone, and clearly contained liquid streams.  Flow pressures greater than 50 psig 

caused the angle of the cone to increase only slightly, and it is clear that the oil is misting. 

3
The results for the 4-gph mini-mist nozzle 

ure 42 for 70-120 psig. The pictures show that the 4-gph nozzle started to mist at 

about 20 psig.  The cone angle increased until about 60 psig, after which it was nearly 

constant, and close to the manufacturer’s specified 80 degrees.  A mist was produced at 

about 20 psig and above, but it is not certain whether the mist extends back to the nozzle 

itself. The initial cone appeared to reflect light from the edges and was transparent 

through the center. Based on these observations, the 4-gph nozzles can be used in spin 

tests at lower pressures, but a question remains as to how close to the test blade they can 

be located. 

4
The results for the 6-gph standard n

ure 44 for 70-120 psig. It appears that there were some streaks of liquid oil in the 

spray pattern at all pressures. At flow pressures greater than 50 psig, the edge of the 

conical spray seems to contain streaks. Since this is relevant to the question of erosion in 

spin tests, a second nozzle of the same type was tested, and very similar results were 

obtained. 



 

 

 
Figure 39.   Hago 2-gph mini-mist nozzle: Left side, 10 (top), 20 (middle), 30 (bottom) psig. 

Right side, 40(top), 50 (middle), 60 (bottom) psig 
 

 

 

 
Figure 40.   Hago 2-gph mini-mist nozzle: Left side, 70 (top), 80 (middle), 90 (bottom) psig. 

Right side, 100 (top), 110 (middle), 120 (bottom) psig 
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Figure 41.   Hago 4-gph m 10 (top), 20 (middle), 30 (bottom) psig. 
iddle), 60 (bottom) psig.

Figure 42.   Hago 4-gph m 70 (top), 80 (middle), 90 (bottom) psig. 
iddle), 120 (bottom) psig. 

 

 
ini-mist nozzle: Left side, 
Right side, 40 (top), 50 (m  

 

 

 

ini-mist nozzle: Left side, 
Right side, 100 (top), 110 (m
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Figure 43.   (top), 20 (middle), 30 (bottom) psig. 
iddle), 60 (bottom) psig. 

 

Figure 44.   70 (top), 80 (middle), 90 (bottom) psig. 
iddle), 120 (bottom) psig. 

Hago 6-gph standard nozzle: Left side, 
Right side, 100 (top), 110 (m

 

 

 

 

 
Hago 6-gph standard nozzle: Left side 10 

Right side, 40 (top), 50 (m
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A. APPARATUS DESCRIPTION 
To measure the velocity of the droplets from various commercial nozzles, a Laser 

Doppler Velocimeter (LDV) made by TSI Incorporated was used.  The LDV system and 

transverse mechanism can be seen in Figures 45 and 46.      

 
Figure 45.   TSI Incorporated LDV system 

 
Figure 46.   Side view of the LDV and transverse mechanism 

IV. LASER DOPPER VELOCIMETRY 
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The LDV system w hamber, as seen 

in Figure 47.  Various commercial fog nozzles could be installed and surveyed relatively 

kly etails of the set-up and operation of the LDV 

are give

 
Figure 47.   st chamber 

 

B. LDV S

Using the L ini-

mi  

ary interest but 

was used first

 

pressures of data were taken was 

microns.  The m

one inch f ct the oil spray 

as used in conjunction with the Vacuum Test C

quic  at controlled supply pressures.  D

n in Appendix D.  

  

Traversing LDV system set on the vacuum te

URVEYS 

DV and the vacuum chamber, the velocity field of the Hago ‘m

st’ nozzles could be determined.  Initially, a 1-gph nozzle was used, and then surveys

were conducted using a 4-gph nozzle.  The 1-gph nozzle was not of prim

 because the lower flow rate would not empty the oil reservoir as quickly 

and therefore give longer times to complete surveys.  When the 4-gph nozzle was used, 

more oil was added to the oil tank.  Both nozzles were operated at oil supply gauge

 77, 85 and 96 psi.  The temperature of the oil when the 

95 degrees Fahrenheit.  The chamber pressure for all tests reported was under 100 

easurements of the velocity distributions were taken at one half inch and 

rom the exit of the nozzle. Since the wand was installed to dire
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into th

e y, vertically downwards direction) and Vel 2 (in the x, 

rizontal direction). The LDV software output the velocity magnitude (V) from the two 

components, and the angle to the x-axis (θ). As can be seen in Figure 48, the flow angle 

with respec

 

e bottom of the PVC T-section (to keep oil away from the windows), the centerline 

of the jet was pointing downwards at 25 deg to the vertical. The LDV traversed across the 

jet in a horizontal (x) direction. The two components of velocity given by the LDV 

system were Vel 1 (in th

ho

t to the axis of the nozzle (φ) is given by φ = θ – 25. 

 
Figure 48.   Nozzle flow orientation and traverse planes 

 
C. RESULTS 

1. 1-gph Mini-Mist Nozzle 
The 1-gph nozzle was installed and the flow pressure was raised to 77 psig.  It can 

be seen in the resulting flow photograph in Figure 49 that the nozzle, at that flow 

pressure, was not producing a mist. (Other 1-gph nozzles were subsequently mounted in 

turn to verify that this pattern was typical of 1-gph jets used with Marcol 5 oil)  Tests to 

determine the velocity field were nevertheless continued since the nozzles had been used 

in spin tests, and the spray pattern shown in Figure 49 would have occurred.   
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Figure 49.   1-gph mini-mist nozzle at 77 psig 

 

Two separate tests (A & B) were conducted to survey at distances of one half inch 

and one inch from the nozzle exit. The results of the four surveys at 77 psig are shown 

plotted in Figure 50.  The starting and ending width of the pattern varied somewhat.  The 

change in starting and ending points might indicate that the vacuum chamber moved 

slightly when the tank was refilled or the windows were cleaned, as well as the effect of 

the changing the distance of the survey plane from the nozzle. The flow pattern was 

expected to be a cone which was hollow in the middle, but the measured pattern for the 1-

gph nozzle at 77 psig did not have a hollow center. It was likely that the non-hollow 

pattern was due to the nozzle not producing a mist.  The average velocity for all four 

surveys was 2 .75 m/s.   For the 

velocity was 24.74 m/s.  For the 1A survey the average velocity 

was 24.84 m/s the average velocity was 25.30 m/s.  Thus the 

velocity

3.91 m/s.  The average velocity for the .5A survey was 20

.5B survey, the average 

, and for the 1B survey, 

 was not changing significantly with distance from the nozzle.  This would be 

expected since the oil droplets were moving in a vacuum. 
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Figure 50.   Surveys of 1-gph mini-mist nozzle flow field at 77 psig 
 
 
 
 

 
Figure 51.   1-gph mini-mist nozzle at 85 psig 
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The 1-gph nozzle flow at a pressure of 85 psig is shown in Figure 51.  Again, the 

nozzle did not produce a mist at this pressure.  The results of the four surveys at this 

pressure are shown plotted in Figure 52. The oil flow pattern did not show evidence of 

being hollow in the middle.  The starting and ending points of the pattern changed, for the 

same reasons as for the 77 psig surveys.  The widths of the oil pattern were however 

about the same.  The average velocity for all four surveys was 25.55 m/s.  The average 

velocity for the .5A survey was 22.46 m/s.  For the .5B survey, the average velocity was 

27.35 m/s.  For the 1A survey, the average velocity was 26.08 m/s, and for the 1B survey, 

the average velocity was 26.31 m/s.  Thus the velocity was not changing significantly 

with distance from the nozzle; however, the average velocity at 85 psig was higher than 

that at 77 psig, as might be expected.    

The 1-gph nozzle flow field at a pressure of 96 psig is shown in Figure 53.  The 

nozzle did not produce a mist at this pressure.  The results for the four surveys at this 

pressure are shown plotted in Figure 54.  The pattern showed no evidence of being 

hollow.  The starting and ending points of th  

pattern were about the same, for the same reasons as at the lower pressures.   

e pattern changed, but the widths of the
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igure 52.   Surveys of 1-gph mini-mist nozzle flow field at 85 psig F



 

 
Figure 53.   1-gph mini-mist nozzle at 96 psig 
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Figure 54.   Surveys of 1-gph mini-mist nozzle flow field at 96 psig 
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he average velocity for all four surveys was 26.21 m/s.  The average velocity for 

/s.  

26.31 m/

nozzle.  Th psig, which was higher 

 
2. 

ilarly to those of 1-

ponent of 

the velocity n at each int.  While 

not com lete, the data did give information as to what the oil mist was doing. 

 
Figure 55.   4-gph mini-mist nozzle at 77 psig 

 

The 4-gph nozzle at a pressure of 77 psig is shown in Figure 55.  The 4-gph 

nozzle did produce a mist at this pressure.  Results for the vertical component of velocity 

at the tw

T

the .5A survey was 22.46 m/s.  For the .5B survey, the average velocity was 27.35 m

For the 1A survey, the average was 26.08 m/s, and for the 1B survey, the average was 

s.  Thus the velocity was not changing significantly with distance from the 

e average velocity at 96 psig was higher than at 85 

than at 77 psig, as would be expected. 

4-gph Mini-Mist Nozzle 
The surveys of the 4-gph nozzle flow field were conducted sim

gph nozzle. Unfortunately, one channel of the LDV failed so that only one com

the velocity was obtained. The velocities at 77 psig were measured at twenty points as 

was done with the 1-gph nozzle. Fewer data points were taken at 85 psig and 96 psig, but 

was taken as the average of four velocity samples take po

p

o survey distances are shown in Figure 56. 
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Figure 56.   Surveys of 4-gph mini-mist nozzle flow field at 77 psig 
 

ddle and the 

 

the two distances from

run was 13.86 m  

 where there was 

an oil mi

decreased to

did produce a m

e is noticeable.  

velocity for the .5  run at 85 psig did not 

show e

The 4-gph nozzle flow pattern was found to be hollow in the mi

hollow area was wider at the one inch distance.  The difference in the overall widths at

 the nozzle is more noticeable.  The average velocity for the .5A 

/s.  Due to the hollow area in the flow, an average velocity for the one

inch distance was not calculated.  More data points needed to be taken

st, but the plot showed that the maximum velocity was at the edge, and that it 

ward the center.     

The 4-gph nozzle at a flow pressure of 85 psig is shown in Figure 57.  The nozzle 

ist at this pressure.  The surveys at the two distances are shown in Figure 

58.  The difference in the widths at half inch and one inch from the nozzl

The average velocity for the .5A run was 18.04 m/s.  This was higher than the average 

 A run at 77 psig, as would be expected. The .5A

vidence of the pattern being hollow in the middle, but the 1A run did show that the 

pattern was hollow.  More data points were needed to get a useful average velocity. 
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Again, the plot showed that the maximum velocity was at the edge of the oil mist and that 

the velocity decreased toward the center of the oil mist. 

 

 
Figure 57.   4-gph mini-mist nozzle at 85 psig 
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Figure 58.   Survey of 4-gph mini-mist nozzle flow field at 85 psig 
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o distances are shown plotted in 

Figure 60. 

 

 
Figure 59.   4-gph mini-mist nozzle at 96 psig 

 

The 4-gph nozzle at a pressure of 96 psig is shown in Figure 59.  The nozzle did 

produce a mist at this pressure.  The surveys at the tw
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Figure 60.   Surveys of 4-gph mini-mist nozzle flow field at 96 psig 
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 velocity for the .5A run at 85 psig, which was higher than at 77 psig, which 

was to be expected. The .5A run at 96 psig did not show evidence of being hollow in the 

middle, but the 1A run did show that the pattern was hollow.  More data points were 

needed to g e velocity 

was maximu

 

 

 

 

The difference in the widths at one half inch and at one inch from the nozzle is 

noticeable.  The average velocity for the .5A run was 20.27 m/s.  This was higher than 

the average

et a useful average velocity.  As at the previous two pressures, th

m at the edge and decreased toward the center. 
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as used successfully both to 

evaluate prototype designs of nozzles with multiple small discrete jets, and to view the 

spray patterns produced by commercially available mist nozzles. Mist nozzles had not 

produced high excitation amplitudes in NPS spin tests, but erosion was not thought to be 

an issue if such nozzles were used. The spray pattern from mist nozzles was needed in 

order to facilitate the design of more effective excitation arrangements.    

The multiple, small jet concept was first demonstrated using bundled alumina 

insulators with 0.005 inch diameter holes. The concept worked, but the holes were too 

close together, so pairs of jets coalesced. The jets were also not positioned along a single 

line.  Small diameter stainless steel tubing was used successfully to build a prototype 

multiple discrete jet nozzle.  However, the machine shop time required to manufacture 50 

such nozzles (each with eight jets) was unacceptable.  Two companies used lasers to drill 

small holes to fabricate prototype nozzles. But in both cases the holes were irregularly 

shaped rather than circular.  The laser-drilled nozzles generated oil-jets, which were not 

parallel to each other, but sometimes the jets crossed or merged.  The nozzles were 

cleaned and smaller filters were added, but the spray patterns remained erratic.  

Therefore, though laser drilling was cost effective, it did not produce nozzles that were 

suitable for use in high cycle fatigue tests.   

Vermont Tool & Molding Company was contracted to produce nozzles by 

mechanically micro-drilling.  The prototypes met the design requirements, that the eight 

discrete jets, from 0.005 inch diameter holes, were in a single line and were emitted 

perpendicular to the face of the nozzle.  Keeping the nozzles clean as they were being 

used was found to be important. It was concluded that the drilled face should not even be 

V. CONCLUSIONS AND RECOMMENDATIONS 

The vacuum test chamber allowed nozzles to be tested quickly to determine 

whether the spray patterns were suitable for use in high cycle fatigue tests.  Such tests 

had shown that discrete jets could, when positioned properly, generate high blade 

resonant excitation amplitudes in vacuum spin tests; but to avoid attendant erosion, 

smaller diameter jets needed to be examined. The chamber w
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touched, s n. An 

order for 50 similar nozzles was completed and delivered. 

 be established 

in orde

 adjusted so that the wand is vertical.  This 

will all

ince any trace deposit was shown to potentially change the spray patter

Mist nozzles that had been used at NPS and at the Navy’s facility at NAWC-AD 

Patuxent River, MD, were tested and photographs were taken of their spray patterns. It 

was determined that 1-gph mini-mist nozzle did not create an oil mist at any supply 

pressure up to 120 psig.  The 2-gph mini-mist nozzle created an oil mist only at flow 

pressures greater than 50 psig.  The 4-gph mini-mist nozzle created an oil mist starting at 

low pressures.  (Since the use of a higher viscosity oil in early tests produced no fog at 

any pressure in these three nozzles, the production of the mist appears to depend on the 

Reynolds number being high enough). The 6-gph standard nozzle created an oil mist, but 

the oil contained streaks of liquid at all flow pressures.  The nozzles, when misting, could 

be used in high cycle fatigue tests, but the velocity of the drops needed to

r to calculate excitation forces.  

The LDV system, set up on the vacuum test chamber, was used successfully to 

make measurements of the velocity of droplets from the mist nozzles.  The 1-gph and the 

4-gph nozzles were measured.  Since the 1-gph did not mist properly, the velocity data 

showed that there was no hollow center to the cone of oil. The velocities were in the 

range 25-30 m/sec. The 4-gph nozzle results showed that the photographed cone was 

hollow as expected from the manufacturer’s literature.  The velocity of the droplets was 

about 20 m/sec. The measurements were sufficient to give the approximate droplet 

velocity within the mist for design purposes. More experiments are needed to determine 

the area of the cone mist, so that the oil ‘impact pattern’ can be defined in designing an 

HCF spin test, for any rotor speed, for any given oil pressure.   

The vacuum test chamber should be

ow velocity data to be taken in surveys that are normal to the axis of the oil mist.  

Velocity measurements should also be recorded starting and ending fully outside the area 

of the cone, so that the cone dimensions can be correlated empirically. The 4-gph nozzle 

produced the most consistent behavior in that it  generated a (clear) mist at almost all oil  
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an analytic representation can 

be attem

 
 

 
 
 

pressures, so future experiments should be initially concentrated of this nozzle.  Once a 

set of complete profiles is obtained at different pressures, 

pted.  

Finally, blade excitation tests need to be conducted in the spin pit using the micro-

drilled discrete jet nozzles to establish whether they can be used in a continuous HCF test 

without causing erosion.    
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APPENDIX A. OIL-NOZZLE VACUUM TEST CHAMBER 

A.1 DESCRIPTION 
A schematic of the apparatus is shown in Figure 61. 

 
Figure 61.   Schematic diagram of the test apparatus 

 
The oil nozzle test apparatus consisted of a ten-inch diameter T-section, an oil 

reservoir, a hydraulic pump, a vacuum pump, and associated piping and valves. Plexiglas 

windows were held between flanges at opposite ends of the horizontal section of the T. 

The hydraulic pump (Baldor Electric motor Catalog Number L5023A, shown in Figure 

62) was used to pump the oil into the nozzle.   A ball valve was used to throttle the flow 

to increase or decrease the pressure of the flow to the nozzle.  The valve, having a yellow 

handle and labeled valve 8 in Figure 61, is shown in Figure 63. The red handle valve in 

Figure A.3 is Valve 9 in Figure 61. When valve 9 was opened, it allowed oil to flow to 

the nozzle. A pressure gauge in the line outside the T-section (shown in Figure 64) was 

used to read the oil pressure as Valve 8 was adjusted to throttle the flow.  A second 

pressure gauge in the line from the hydraulic pump, as shown in Figure 65, was used to 

read pressure produced by the pump. 
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Figure 62.   Baldor Electric Motor (Catalog number L53023A) 

 
 
 

 

 
Figure 63.   Valve 8 (Yellow handle) and Valve 9 (Red handle) 
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Gauge 2 was m acity 

zles.  

rates.   

The vacuum pump (Welch Duo-seal Vacuum Pump Model 1397 shown in Figure 

66) was used to hold a near-vacuum in the T s.  The vacuum pump 

could also be used to create a vacuum in the oil reservoir.   

 
Figure 64.   Flow gauge 1 

 
Figure 65.   Valve 9 and Flow gauge 2 

 

onitored to make sure the oil pressure was limited to within the cap

of the PVC piping (~300 psia).  It was also used to monitor the flow into the noz

Both gauges showed similar pressures, differing by no more than 5 psi at higher oil flow 

-section of the apparatu
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Figure 66.   Welch Duo Seal vacuum pump Model 1397 

 

lied the oil used during the 

testing.  Creating a vacuum  the T-section to be 

transfer  T-section to the 

atmo  the bottom of the T-

 pressure 

eod Gage shown in 

icrons in about 5 

minutes. Oc  at about 50 

microns. 

Plexiglas windows were held between flanges at the two (horizontal) ends of the 

tures of the oil- nozzle flows.  The right side window was used to observe and 

photog

The oil reservoir, shown in Figure 67, stored and supp

 in the oil tank allowed the oil injected into

red back to the tank quickly. Adjusting the valves to open the

sphere, with the oil tank pumped to a vacuum, the oil from

section was driven into the oil tank in a matter of minutes.  The near-vacuum

inside the T-section or the oil tank was read using the Stokes-MacL

Figure 68.  The pressure inside the tank could get as low as 100 m

casionally, the vacuum pump was able to maintain the vacuum

T-section. O-rings in the faces of the flanges were used to seal against vacuum.  

Following experiments using different lighting arrangements, the left side was covered 

with a white sheet as shown in Figure 69. The diffuse background lighting resulted in the 

best pic

raph the flow, as show in Figure 70.   
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Figure 67.   Oil tank 
 
 
 
 
 

 
Figure 68.   Stokes-MacLeod gauge 
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Figure 6 te sheet 

 

The digital camera in Figure 70 was used to take pictures of the spray patterns at 

different flow pressures.  The camera sat on wooden blocks to ensure that the 

ould be removed 

for cleaning since o

through a S  

comp ber is shown 

enlarged in Figure 72. 

The f low the nozzle to be 

changed.  To alled in series.  A 

3-micron f e as shown in 

Figure 4.  A 5-m nd, upstream o the nozzle.  

Keeping the oil clean was extremely important in order to prevent the small gaps in the 

mist nozzles from clogging or causing the s all discrete jets to not exit perpendicular to 

the nozzle surface.  If holes in the nozzles were found to be contaminated, the nozzle was 

removed from the wand and cleaned using pressurized nitrogen to blow out contaminant 

 
9.   Left-side with whi

photographs were taken from the same angle, distance and height. This ensured 

consistency as different nozzles were tested.  The Plexiglas windows c

il could splatter and contaminate the windows.   

The nozzle to be tested was attached to the end of a copper ‘wand’, which slipped 

wagelok fitting in the side of the T-section, as can be seen in Figure 64. The

lete wand is shown in Figure 71 and the section inside the cham

itting could be unscrewed from the T-section to al

 prevent the oil nozzles from clogging, two filters were inst

ilter was attached to the wand upstream of the pressure gaug

icron filter was attached to the end of the wa f 

m
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particles.  After cleaning, the nozzle was carefully re-attached to the wand. The nozzle 

outlet su articles 

from the hands.  

 

rfaces were not touched, to prevent holes being re-contaminated by p

 
Figure 70.   Right-side window with camera on wooden blocks 

 
 

 
Figure 71.   The wand removed from the T-section 

 



 
 

60 60 

 

 
 

 
Figure 72.   Close-up of the tip of the wand 
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APPENDIX B. MSDS FOR MARCOL 5 

A. 
The f DS) for 

 

MATERTIAL SAFETY DATA SHEETS 
ollowing figures show the Material Safety Data Sheets (MS

MARCOL 5.  They are shown in Figure 73, 74, 75, 76, 77, 78, 79, and 80. 

 
Figure 73.   Page 1 of the MSDS for MARCOL 5 
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Figure 74.   Page 2 of the MSDS for MARCOL 5 

 



 
 

Figure 75.   Page 3 of the MSDS for MARCOL 5 
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Figure 76.   Page 4 of the MSDS for MARCOL 5 
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Figure 77.   Page 5 of the MSDS for MARCOL 5 
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Figure 78.   Page 6 of the MSDS for MARCOL 5 
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Figure 79.   Page 7 of the MSDS for MARCOL 5 
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Figure 80.   Page 8 of the MSDS for MARCOL 5 
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APPENDIX C. DIAGRAM OF THE SWAGELOK PIPE CAP 

A. DIAGRAM 
Figure 81 shows the diagram sent to companies to see if the could produce a 

prototype nozzle. 

 
Figure 81.   Diagram of the Swagelok pipe cap with required specifications 
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APPENDIX D. LASER DOPPLER VELOCIMETRY APPARATUS 

A schematic of the vacuum chamber and the Laser traverse system is shown in Figure 82. 

 

 
Figure 82.    Schematic diagram of vacuum chamber and LDV 

 

Information on the optics and automation of the LDV system can be found in References 

23, 24, and 25.  The operation of the vacuum chamber can be found in Appendix A.  The 

laser can be traversed in the x, y, or z-direction by a transverse mechanism as shown in 

Figure 83.  The position of the laser can be read on the output box as shown in Figure 84.  

The position can be changed using a hand held device as shown in Figure 85.  The Z-

direction was constant throughout the experiment once it was determined to be in the 

center of the mist. The movement in the Y-direction was set at two locations, either at 

half inch or one inch from the nozzle exit.  The measurements were taken at equal 

distances along the x-axis.  Figure 86 shows the laser along the x-axis within the mist of a 

1-gph mini-mist nozzle in the vacuum chamber.  The LDV system is attached to a 

computer.  A computer program interprets the signals from detectors that received pulses 

of back-scattered light from the lasers, and outputs particle velocity.  The green laser  



72 

 
Figure 83.    LDV transverse mechanism 

 

 
Figure 84.    X, Y, and Z display console 
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Figu V 

Figure 86.    ist nozzle 

re 85.   Hand held device used to move LD

 

 
Laser in use with in a mist from a 1-gph mini-m
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gives the vertical component of velocity and the blue laser gives the horizontal 

component of the velocity.  The green laser velocity component is Velocity 1, and the 

blue laser velocity component is Velocity 2.   The computer program gives real time 

values for the velocities.  The wand can be adjusted to be farther into the chamber to 

prevent oil droplets from appearing on the windows as shown in Figure 87.  Droplets on 

the windows, especially the window on the laser side will degrade the reflected light 

signal back to the computer.  The vacuum chamber was made so that the windows can be 

taken off to be cleaned and put back quickly.   

 

 

 

 
Figure 87.    Vacuum chamber with adjustable wand 



APPENDIX E. LDV VELOCITY DATA TABLES 

 

Date 3-Feb-05
Nozzle 1 gph 

Pressure (psig) 77
Pressure (micron) 125
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.5200 15.40 18.53 24.09 50.27 14.22 18.89 23.64
-0.4960 14.72 17.57 22.92 50.04
-0.4720 14.29 17.87 22.88 51.35
-0.4480 15.33 15.91 22.09 46.06
-0.4240 15.41 14.66 21.27 43.57
-0.4000 16.49 13.00 21.00 38.25 15.42 12.59 19.91
-0.3760 17.49 12.49 21.49 35.53
-0.3520 17.02 12.05 20.85 35.30
-0.3280 18.63 11.06 21.67 30.70
-0.3040 18.14 9.39 20.43 27.37
-0.2800 18.34 5.23 19.07 15.92 19.91 8.56 21.67
-0.2560 16.86 4.89 17.55 16.17
-0.2320 18.93 7.06 20.20 20.45
-0.2080 14.73 3.19 15.07 12.22
-0.1840 14.25 2.38 14.45 9.48
-0.1600 14.68 1.95 14.81 7.57 15.88 2.51 16.08
-0.1360 22.50 3.79 22.82 9.56
-0.1120 19.60 2.26 19.73 6.58
-0.0880 15.27 1.45 15.34 5.42
-0.0640 25.01 -2.23 25.11 -5.10
-0.0400 12.12 -1.75 12.25 -8.22 12.03 1.24 12.09

AVG 20.75  
 1-gph mini-mist nozzle: Run A with the flow pressure at 77 psig and 0.5 

inch from the nozzle exit. 
 

 
 
 
 
 
 
 
 
 
 

Table 1.
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e 14-Feb-05
No le 1 gph

Pressure (psig) 77
Pressure (micron) 70
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.5800 16.19 20.41 26.05 51.58 16.22 20.62 26.23
-0.5565 16.26 19.76 25.59 50.55
-0.5330 16.31 18.64 24.77 48.81
-0.5095 16.47 17.93 24.35 47.43
-0.4860 17.66 17.34 24.75 44.48
-0.4625 17.99 15.23 23.57 40.25 18.78 14.96 24.01
-0.4390 16.85 18.45 24.99 47.60
-0.4155 19.75 12.72 23.49 32.78
-0.3920 19.51 13.32 23.62 34.32
-0.3685 18.42 12.92 22.50 35.05
-0.3450 17.06 11.84 20.77 34.76 17.23 11.37 20.64
-0.3215 19.05 10.54 21.77 28.95
-0.2980 20.94 10.45 23.40 26.52
-0.2745 20.40 11.36 23.35 29.11
-0.2510 20.51 14.92 25.36 36.03
-0.2275 18.85 11.52 22.09 31.43 18.40 10.42 21.15
-0.2040 20.45 9.28 22.46 24.41
-0.1805 20.94 7.90 22.38 20.67
-0.1570 20.03 6.58 21.08 18.19
-0.1335 22.45 1.13 22.48 2.88
-0.1100 25.89 2.10 25.98 4.64 26.44 7.85 27.58

AVG 24.74

Dat
zz

 
Table 2. 1-gph mini-mist nozzle: Run B with the flow pressure at 77 psig and 0.5 

inch from the nozzle exit. 

 

 
 
 
 
 
 
 
 

 
 

 

 
 



77 

 
 

0
AVG

 
 
 

Date 8-Feb-05
Nozzle 1gph

Pressure (psig) 77
Pressure (micron) 300
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.8300 17.06 20.25 26.48 49.89 16.17 20.34 25.98
-0.8033 19.21 18.90 26.95 44.53
-0.7765 18.86 18.03 26.09 43.71
-0.7498 19.13 16.41 25.20 40.62
-0.7230 19.00 14.64 23.99 37.62
-0.6963 20.83 14.80 25.55 35.39 16.48 12.56 20.72
-0.6695 19.37 12.01 22.79 31.80
-0.6428 18.74 7.47 20.17 21.73
-0.6160 18.69 5.96 19.62 17.69
-0.5892 17.54 6.32 18.64 19.82
-0.5625 22.17 9.76 24.22 23.76 21.79 9.49 23.77
-0.5357 22.25 9.37 24.14 22.84
-0.5090 20.33 9.02 22.24 23.93
-0.4822 18.87 8.66 20.76 24.65
-0.4555 19.08 7.82 20.62 22.29
-0.4287 20.59 15.72 25.90 37.36 19.71 6.36 20.71
-0.4020 21.66 8.91 23.42 22.36
-0.3752 22.09 12.35 25.31 29.21
-0.3485 19.65 6.20 20.60 17.51
-0.3217 25.53 3.66 25.79 8.16
-0.295 28.10 2.57 28.22 5.23 20.51 3.92 20.88

24.84  
Table 3. 1-gph mini-mist nozzle: Run A with the flow pressure at 77 psig and 1 

inch from the nozzle exit.    
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Date 10-Feb-05
Nozzle 1 gph

Pressure (psig) 77
Pressure (micron) 100
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-1.0000 17.62 19.32 26.15 47.63 17.20 19.59 26.07
-0.9466 18.01 19.50 26.54 47.27
-0.8932 17.14 17.79 24.70 46.07
-0.8398 19.77 16.47 25.73 39.80
-0.7864 21.17 15.39 26.17 36.02
-0.7330 19.84 14.40 24.52 35.97 19.74 14.27 24.36
-0.6796 19.48 13.07 23.46 33.86
-0.6262 19.85 13.93 24.25 35.06
-0.5728 20.84 14.22 25.23 34.31
-0.5194 21.06 12.96 24.73 31.61
-0.4660 21.63 11.67 24.58 28.35 21.45 10.33 23.81
-0.4126 21.67 9.13 23.51 22.85
-0.3592 22.36 6.64 23.33 16.54
-0.3058 21.94 6.50 22.88 16.50
-0.2524 21.91 4.65 22.40 11.98
-0.1990 21.88 3.25 22.12 8.45 23.49 2.11 23.58
-0.1456 22.75 1.52 22.80 3.82
-0.0922 21.66 1.66 21.72 4.38
-0.0388 23.19 1.38 23.23 3.41 22.89 2.13 22.99
0.0146 22.50 0.77 22.51 1.96
0.0680 25.35 -2.10 25.44 -4.74 0.00

AVG 25.30  
Table 4. 1-gph mini-mist nozzle: Run B with the flow pressure at 77 psig and 1 

inch from the nozzle exit. 
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te 3-Feb-05
No le 1 gph

Pressure (psig) 85
Pressure (micron) 125
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.4600 17.97 18.28 25.63 45.49 17.25 18.92 25.60
-0.4335 18.35 16.93 24.97 42.70
-0.4070 19.78 15.99 25.43 38.95
-0.3805 18.13 15.29 23.72 40.14
-0.3540 18.96 14.57 23.91 37.54
-0.3275 21.34 13.86 25.45 33.00 18.39 13.02 22.53
-0.3010 18.96 12.40 22.65 33.19
-0.2745 20.16 13.01 23.99 32.84
-0.2480 18.72 11.54 21.99 31.65
-0.2215 15.42 10.50 18.66 34.25
-0.1950 15.13 9.86 18.06 33.09 18.63 8.12 20.32
-0.1685 22.27 10.86 24.78 26.00
-0.1420 20.96 7.74 22.34 20.27
-0.1155 21.47 8.55 23.11 21.71
-0.0890 20.97 6.12 21.84 16.27
-0.0625 21.59 5.32 22.24 13.84 21.00 6.12 21.87
-0.0360 21.70 4.89 22.24 12.70
-0.0095 21.11 1.80 21.19 4.87
0.0170 14.87 1.21 14.92 4.65
0.0435 12.37 1.12 12.42 5.17
0.0700 9.54 1.23 9.62 7.35 15.65 0.38 15.65

AVG 22.46

 
Da
zz

 
Table 5. 1-gph mini-mist nozzle: Run A with the flow pressure at 85 psig and 0.5 

inch from the nozzle exit. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Date 15-Feb-05

Nozzle 1 gph
Pressure (psig) 85
Pressure (micron) 60
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.6600 19.21 25.16 31.66 52.64 19.26 24.95 31.52
-0.6295 18.34 23.06 29.46 51.50
-0.5990 19.96 23.09 30.52 49.16
-0.5685 17.87 21.22 27.74 49.90
-0.5380 19.72 19.92 28.03 45.29
-0.5075 18.68 18.15 26.05 44.18 19.09 17.99 26.23
-0.4770 19.71 15.68 25.19 38.50
-0.4465 20.35 14.69 25.10 35.82
-0.4160 20.38 14.71 25.13 35.82
-0.3855 20.00 14.17 24.51 35.32
-0.3550 20.57 12.20 23.92 30.67 20.75 11.20 23.58
-0.3245 21.95 11.35 24.71 27.34
-0.2940 23.45 9.55 25.32 22.16
-0.2635 23.33 8.92 24.98 20.92
-0.2330 23.05 6.25 23.88 15.17
-0.2025 18.07 5.71 18.95 17.54 17.53 8.11 19.32
-0.1720 24.37 4.74 24.83 11.01
-0.1415 22.94 6.34 23.80 15.45
-0.1110 23.91 5.40 24.51 12.73
-0.0805 27.34 6.52 28.11 13.41
-0.0500 30.62 1.62 30.66 3.03 23.12 1.86 23.19

AVG 27.35  
Table 6. 1-gph mini-mist nozzle: Run B with the flow pressure at 85 psig and 0.5 

inch from the nozzle exit. 
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Date 8-Feb-05

Nozzle 1 gph
Pressure (psig) 85
Pressure (micron) 60
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000

X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude
-0.9100 18.89 19.86 27.41 46.43 18.51 19.73 27.05
-0.8755 17.83 19.12 26.14 47.00
-0.8410 20.73 17.71 27.26 40.51
-0.8065 22.35 14.96 26.89 33.80
-0.7720 21.50 12.91 25.08 30.98
-0.7375 19.77 13.89 24.16 35.09 19.71 13.77 24.04
-0.7030 20.60 14.18 25.01 34.54
-0.6685 21.67 12.76 25.15 30.49
-0.6340 21.70 12.00 24.80 28.94
-0.5995 22.39 11.83 25.32 27.85
-0.5650 21.57 11.14 24.28 27.31 21.76 10.10 23.99
-0.5305 21.43 9.62 23.49 24.18
-0.4960 23.09 9.25 24.87 21.83
-0.4615 23.37 8.21 24.77 19.36
-0.4270 22.66 7.04 23.73 17.26
-0.3925 22.69 6.39 23.57 15.73 22.69 4.50 23.13
-0.3580 23.11 4.90 23.62 11.97
-0.3235 22.61 4.75 23.10 11.86
-0.2890 23.83 3.93 24.15 9.36 23.95 0.71 23.96
-0.2545 23.24 3.07 23.44 7.53
-0.2200 25.25 1.30 25.28 2.95 0.00 0.00 0.00

AVG 26.08  
Table 7. 1-gph mini-mist nozzle: Run A with the flow pressure at 85 psig and 1 

inch from the nozzle exit. 
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Date 11-Feb-05

Nozzle 1 gph
Pressure (psig) 85
Pressure (micron) 100
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.8200 18.89 18.80 26.65 44.86 19.47 18.93 27.16
-0.7870 19.56 18.77 27.11 43.82
-0.7540 22.89 16.29 28.09 35.44
-0.7210 20.77 14.07 25.09 34.11
-0.6880 20.02 14.22 24.56 35.39
-0.6550 19.74 14.47 24.48 36.24 20.19 13.25 24.15
-0.6220 20.19 14.35 24.77 35.40
-0.5890 20.03 14.42 24.68 35.75
-0.5560 20.56 14.73 25.29 35.62
-0.5230 20.18 14.40 24.79 35.51
-0.4900 21.58 13.71 25.57 32.43 21.19 12.64 24.67
-0.4570 21.84 11.82 24.83 28.42
-0.4240 21.77 9.54 23.77 23.66
-0.3910 22.52 8.38 24.03 20.41
-0.3580 22.71 7.54 23.93 18.37
-0.3250 22.72 7.18 23.83 17.54 22.29 7.71 23.59
-0.2920 22.97 6.17 23.78 15.04
-0.2590 23.59 4.74 24.06 11.36
-0.2260 25.48 4.25 25.83 9.47
-0.1930 24.83 3.77 25.11 8.63
-0.1600 25.94 2.27 26.04 5.00 22.69 2.02 22.78

AVG 26.31  
Table 8. 1-gph mini-mist nozzle: Run B with the flow pressure at 85 psig and 1 

inch from the nozzle exit. 
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Date 4-Feb-05

Nozzle 1 gph
Pressure (psig) 96
Pressure (micron) 150
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.51 11.19 22.25 24.91 63.30 14.01 17.90 22.73
-0.48385 15.91 18.62 24.49 49.49
-0.4577 17.17 18.12 24.96 46.54

-0.43155 16.10 17.10 23.49 46.73
-0.4054 16.83 16.24 23.39 43.98

-0.37925 18.06 14.55 23.19 38.86 17.90 14.36 22.95
-0.3531 20.01 15.01 25.01 36.87

-0.32695 19.84 15.84 25.39 38.60
-0.3008 20.01 12.85 23.78 32.71

-0.27465 19.49 11.90 22.84 31.41
-0.2485 21.02 12.89 24.66 31.52 22.78 10.28 24.99

-0.22235 22.73 11.21 25.34 26.25
-0.1962 21.77 9.17 23.62 22.84

-0.17005 22.67 8.56 24.23 20.69
-0.1439 22.64 7.77 23.94 18.94

-0.11775 23.38 6.03 24.15 14.46 23.42 3.01 23.61
-0.0916 22.57 4.56 23.03 11.42

-0.06545 20.30 3.11 20.54 8.71
-0.0393 17.00 1.40 17.06 4.71

-0.01315 16.29 1.22 16.34 4.28
0.013 0.25 1.35 1.37 79.51 1.64 1.65 2.33

AVG 23.29  
T 1able 9. -gph mini-mist nozzle: Run A with the flow pressure at 96 psig and 0.5 

inch from the nozzle exit. 
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Date 15-Feb-05

Nozzle 1 gph
Pressure (psig) 96
Pressure (micron) 60
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.6600 19.04 22.24 29.28 49.43 19.24 21.23 28.65
-0.6285 19.05 21.17 28.48 48.02
-0.5970 19.16 19.73 27.50 45.84
-0.5655 19.96 18.90 27.49 43.44
-0.5340 21.30 19.29 28.74 42.17
-0.5025 22.50 13.53 26.25 31.02 22.66 13.78 26.52
-0.4710 21.15 14.60 25.70 34.62
-0.4395 20.27 14.34 24.83 35.28
-0.4080 21.49 13.26 25.25 31.68
-0.3765 22.35 12.55 25.63 29.32
-0.3450 21.63 10.82 24.19 26.58 21.60 10.81 24.15
-0.3135 22.05 8.42 23.60 20.90
-0.2820 23.10 10.72 25.47 24.89
-0.2505 23.72 12.30 26.72 27.41
-0.2190 24.48 10.05 26.46 22.32
-0.1875 24.45 5.56 25.07 12.81 24.23 5.75 24.90
-0.1560 21.78 8.16 23.26 20.54
-0.1245 21.70 7.95 23.11 20.12
-0.0930 26.69 5.55 27.26 11.75
-0.0615 24.60 4.49 25.01 10.34
-0.0300 22.98 -2.69 23.14 -6.68 24.27 0.89 24.29

AVG 27.12  
Table 10. 1-gph mist-mini nozzle: Run B with the flow pressure at 96 psig and 0.5 

inch from the nozzle exit. 
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Date 8-Feb-05

Nozzle 1 gph
Pressure (psig) 96
Pressure (micron) 60
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000

X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude
-1.1000 18.47 20.06 27.27 47.36 17.59 20.52 27.03
-1.0475 18.84 19.46 27.09 45.93
-0.9950 19.75 18.48 27.05 43.10
-0.9425 19.64 16.25 25.49 39.60
-0.8900 22.74 17.21 28.52 37.12
-0.8375 24.21 15.65 28.83 32.88 21.52 15.87 26.74
-0.7850 20.97 14.76 25.64 35.14
-0.7325 20.95 13.10 24.71 32.02
-0.6800 21.65 12.28 24.89 29.56
-0.6275 21.96 12.98 25.51 30.59
-0.5750 22.03 12.08 25.12 28.74 22.13 12.55 25.44
-0.5225 22.00 11.08 24.63 26.73
-0.4700 22.94 10.18 25.10 23.93
-0.4175 23.09 9.15 24.84 21.62
-0.3650 22.55 7.72 23.83 18.90
-0.3125 23.29 5.97 24.04 14.38 24.11 6.97 25.10
-0.2600 23.26 4.56 23.70 11.09
-0.2075 24.22 3.12 24.42 7.34
-0.1550 24.46 2.84 24.62 6.62 23.98 0.89 24.00
-0.1025 22.56 2.26 22.67 5.72
-0.0500 24.30 1.28 24.33 3.02 0.00 0.00 0.00

AVG 26.62  
Table 11. 1-gph mini-mist nozzle: Run A with the flow pressure at 96 psig and 1 

inch from the nozzle exit. 
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Date 14-Feb-05

Nozzle 1 gph
Pressure (psig) 96
Pressure (micron) 80
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000
X position (in) Vel 1 Vel 2 Magnitude Theta vel 1 vel 2 magnitude

-0.9900 19.64 20.30 28.25 45.95 19.56 20.64 28.44
-0.9485 20.87 19.95 28.87 43.71
-0.9070 21.59 19.18 28.88 41.62
-0.8655 21.61 16.94 27.46 38.09
-0.8240 23.12 16.47 28.39 35.46
-0.7825 20.95 16.74 26.82 38.63 20.85 16.29 26.46
-0.7410 21.81 16.57 27.39 37.23
-0.6995 22.48 15.27 27.18 34.19
-0.6580 22.63 14.78 27.03 33.15
-0.6165 22.98 13.40 26.60 30.25
-0.5750 23.20 12.61 26.41 28.53 23.85 13.45 27.38
-0.5335 24.45 11.68 27.10 25.53
-0.4920 23.21 11.20 25.77 25.76
-0.4505 22.45 9.60 24.42 23.15
-0.4090 22.96 8.67 24.54 20.69
-0.3675 23.82 6.80 24.77 15.93 23.72 6.21 24.52
-0.3260 23.97 5.06 24.50 11.92
-0.2845 24.82 3.71 25.10 8.50
-0.2430 26.19 3.18 26.38 6.92
-0.2015 25.45 2.70 25.59 6.06
-0.1600 25.29 -0.84 25.30 -1.90 24.96 1.10 24.98

AVG 27.84  
Table 12. 1-gph mini-mist nozzle: Run B with the flow pressure at 96 psig and 1 

inch from the nozzle exit. 
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Date 19-Feb-05

Nozzle  4 gph
Pressure (psig) 77
Pressure (micron) 70
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -0.5000

X position (in) Vel 1
0.0900 5.75
0.0405 16.13
-0.0090 13.85
-0.0585 13.49
-0.1080 12.06
-0.1575 13.34
-0.2070 13.97
-0.2565 11.2
-0.3060 8.83
-0.3555 7.73
-0.4050 13.02
-0.4545 16.45
-0.5040 16.48
-0.5535 15.53
-0.6030 15.99
-0.6525 15.03
-0.7020 13.21
-0.7515 12.64
-0.8010 12.61
-0.8505 14.64
-0.9000 15.28

AVG 13.8615  
 

zzle: Run A with the flow pTable 13. 4-gph mini-mist no ressure at 77 psig and 0.5 
inch from the nozzle exit. 
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Date 19-Feb-05
Nozzle 4 gph

Pressure (psig) 77
Pressure (micron) 100
Temperature (F) 95

Z position (in) 0.0000
Y position (in) -1.0000

X position (in) Vel 1
0.1000 23.38
0.0180 18.58
-0.0640 8.30
-0.1460 5.81
-0.2280 5.02
-0.3100 4.46
-0.3920 0.00
-0.4740 0.00
-0.5560 0.00
-0.6380 0.00
-0.7200 0.00
-0.8020 0.00
-0.8840 0.00
-0.9660 0.00
-1.0480 0.00
-1.1300 0.00
-1.2120 0.00
-1.2940 0.00
-1.3760 10.86
-1.4580 14.53
-1.5400 17.26  

 
 Table 14. 4-gph mini-mist nozzle: Run B with the flow pressure at 77 psig and 1 

inch from the nozzle exit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



89 

 

 
 

Date 20-Feb-05
Nozzle 4 gph

Pressure (psig) 85
Pressure (microns) 800
Temperature (F) 88

Z position (in) 0.0000
Y position (in) -0.5000

X position (in) Vel 1
-0.0560 17.9275
-0.1664 21.7325
-0.3320 20.1975
-0.4976 18.0925
-0.6080 18.2775
-0.7184 17.7750
-0.8840 16.3650
-0.9944 16.1475
-1.1600 15.9075

AVG 18.0469  
Table 15. 4-gph mini-mist nozzle: Run A with the flow pressure at 85 psig and 0.5 

inch from the nozzle exit. 
 
 

-0.0633 19.4575
-0.3593 0.0000
-0.6552 0.0000
-0.8525 0.0000
-1.0498 0.0000
-1.3458 9.2800
-1.5431 13.4575
-1.8390 15.6050

Date 20-Feb-05
Nozzle 4 gph

Pressure (psig) 85
Pressure (microns) 800
Temperature (F) 88

Z position (in) 0.0000
Y position (in) -1.0000

X position (in) Vel 1
0.1340 16.6625

 
Table 16. 4-gph mini-mist nozzle: Run B with the flow pressure at 85 psig and 1 

inch from the nozzle exit. 
 
 
 
 
 



 
 
 

Date 20-Feb-05
Nozzle 4 gph

Pressure (psig) 96
Pressure (microns) 800
Temperature (F) 93

Z position (in) 0.0000
Y position (in) -0.5000

X position (in) Vel 1
-0.0260 20.1700
-0.1394 23.9425
-0.3095 22.7300
-0.4796 21.6525
-0.5930 19.9300
-0.7064 19.6575
-0.8765 18.4600
-1.0466 18.2750
-1.1600 17.6300

AVG 20.2719  
Table 17. 4-gph mini-mist nozzle: Run A with the flow pressure at 96 psig and 0.5 

inch form the nozzle exit. 
 
 
 

Date 20-Feb-05
Nozzle 4 gph

Pressure (psig) 96
Pressure (microns) 800
Temperature (F) 93

Z position (in) 0.0000
Y position (in) -1.0000

X position (in) Vel 1
0.0600 21.8375
-0.1510 13.1275
-0.4675 0.0000
-0.7840 0.0000
-0.9950 8.8225
-1.2060 14.4075
-1.5225 19.8675
-1.8390 17.9125
-2.0500 0.0000  

Table 18. 4-gph mini-mist nozzle: Run B with the flow pressure at 96 psig and 1 
inch from the nozzle exit. 
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